Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Diazabicyclo[2.2.2]octane-1,4-diium dichromate

Zhi-Min Jin, ${ }^{\text {a }}{ }^{*}$ Hui-Min Zhang, ${ }^{\text {a }}$ Hai-Bin Wang, ${ }^{\text {b }}$ Mao-Lin Hu^{c} and Liang Shen ${ }^{\text {d }}$
${ }^{\text {a }}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ${ }^{\text {b }}$ College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China,
${ }^{\text {c }}$ Department of Chemistry, Wenzhou Normal College, Wenzhou, Zhejiang 325003, People's Republic of China, and dDepartment of Chemistry, Hangzhou Teachers' College, Hangzhou, People's Republic of China
Correspondence e-mail: zimichem@sina.com

Received 7 June 2004
Accepted 20 September 2004
Online 22 October 2004
The title compound, $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\left[\mathrm{Cr}_{2} \mathrm{O}_{7}\right]$, consists of a diazabi-cyclo[2.2.2]octane-1,4-diium cation and a discrete dichromate anion, which are linked in the crystal by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The cation is ordered and distorted, owing to the confinement and twist of the hydrogen bonds involved. Two CrO_{4} tetrahedra are joined through a shared O atom to form the dichromate anion. Chiral supramolecular chains of the title compound are built up via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions play subordinate roles in forming the structure.

Comment

Chromates may exist as mono-, di-, tri-, tetra- and polymeric forms (Pressprich et al., 1988; Wang et al., 2003; Yim \& Nam, 2004; Fouada et al., 1999). As no theory can currently predict the real state of these chromium compounds, many experimental attempts to find new chromates have been made since the turn of the century. We have now synthesized the title salt, (I), and its structure is compared with those of other chromates.

(I)

Fig. 1 shows the asymmetric unit of the counterbalanced ion pair of (I), which consists of a diprotonated diazabicyclo[2.2.2]octane (DABCO) dication and a discrete dichromate anion, linked via an $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$ hydrogen bond (Table 2). The dichromate anion is composed of two CrO_{4} tetrahedra joined through a shared O atom. The bridging $\mathrm{Cr}-\mathrm{O}$ bond lengths, $\mathrm{Cr} 1-\mathrm{O} 4$ and $\mathrm{Cr} 2-\mathrm{O} 4$, are longer than the terminal $\mathrm{Cr}-\mathrm{O}$ bonds. The $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angles range from 106.82 (10) to
$111.68(11)^{\circ}$. Therefore, the coordination geometries formed by the four O atoms around each Cr atom are distorted tetrahedra. The bond lengths and angles are in good agreement with those found in bipyridinium dichromates (MartínZarza et al., 1995), bis(octyltrimethylammonium) dichromate (Fossé et al., 1998) and tetramethylammonium dichromate (Fossé et al., 2001). $\left(\mathrm{CrO}_{3}\right)_{n}$ is an extreme case of a polychromate, where chains of corner-sharing CrO_{4} tetrahedra extend along the whole crystal (Stephens \& Cruickshank, 1970). In (I), the bridging $\mathrm{Cr}-\mathrm{O}$ bond distance is obviously longer than that in $\left(\mathrm{CrO}_{3}\right)_{n}(1.748 \AA)$, and the terminal $\mathrm{Cr}-\mathrm{O}$ distances are comparable with those in $\left(\mathrm{CrO}_{3}\right)_{n}(1.599 \AA)$.

Compound (I) demonstrates a hydrogen-bonding network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, which is similar to what is observed in diprotonated DABCO trichromate (Ding et al., 2004). There are bifurcated hydrogen bonds between the cations and the anions, namely $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$ and $\mathrm{N} 1-$ $\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$, and $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 7^{\mathrm{ii}}$ and $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 5^{\text {iii }}$ (symmetry codes and geometric details are given in Table 2). On close inspection, two chiral supramolecular chains of (I) are observed, which could be described in graph-set notation (Etter, 1990) as $C_{2}^{2}(11)$. One chain is formed via $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$ and $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{ii}}$ interactions and runs along the c axis (Fig. 3), and another is formed via $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$ and $\mathrm{N} 2-$ $\mathrm{H} 2 \cdots \mathrm{O} 5^{\mathrm{iii}}$ interactions and runs along the b axis (Fig. 2). These chains are joined by a number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, of which the shortest is $\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$ (Table 2). Hydrogen-bonded chains are formed in (I), rather than the hydrogen-bonded rings observed in diprotonated DABCO trichromate.

Figure $1{ }^{\text {OS }}$
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates one of the intramolecular hydrogen bonds.

Figure 2

The chiral supramolecular $C_{2}^{2}(11)$ chain of (I), which is formed via $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (indicated by dashed lines), viewed along the b axis. The atom labelled with a hash (\#) is at the symmetry position ($1-x$, $y-\frac{1}{2}, \frac{1}{2}-z$).

Figure 3
The chiral supramolecular $C_{2}^{2}(11)$ chain of (I), which is formed via $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (indicated by dashed lines), viewed along the c axis. The atom labelled with an asterisk $(*)$ is at the symmetry position $(x$, $\left.\frac{3}{2}-y, z+\frac{1}{2}\right)$.

DABCO may assume one of several conformations, namely ordered and non-distorted, ordered and distorted, disordered and non-distorted, or disordered and distorted (Nimmo \& Lucas, 1976). Disordered conformations are frequently observed, such as 1:1 DABCO-biphenol (Ferguson et al., 1998), 1:1 DABCO-perchloric acid (Katrusiak, 2000) and 1:2 DABCO-maleic acid (Sun \& Jin, 2002). In (I), the diprotonated DABCO is ordered and distorted, owing to the confinement and twist of the above-mentioned hydrogen bonds. The situation is similar to that in diprotonated DABCO trichromate. In (I), the $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angles, with a mean value of $17.1(3)^{\circ}$, indicate such a large distortion as to be comparable with the motif in an encapsulated diprotonated DABCO (Jin et al., 2003).

Experimental

$\mathrm{CrO}_{3}(0.2 \mathrm{~mol})$ and DABCO (0.1 mol) were dissolved separately in water (1.5 and 1.2 mol), and the two solutions were then mixed with cautious stirring. Crystals of the title salt were formed in the final solution by slow evaporation of the water at 298 K for a week.

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)\left[\mathrm{Cr}_{2} \mathrm{O}_{7}\right]$
$M_{r}=330.19$
Orthorhombic, Pbca
$a=9.0727(4) \AA$
$b=12.9327(5) \AA$
$c=19.0201(8) \AA$
$V=2231.71(16) \AA^{3}$
$Z=8$
$D_{x}=1.965 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: by integra-
tion $(S A D A B S ;$ Bruker, 2000)
$T_{\min }=0.554, T_{\text {max }}=0.660$
10994 measured reflections

Mo $K \alpha$ radiation

Cell parameters from 5621 reflections
$\theta=2.9-25.2^{\circ}$
$\mu=1.97 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, red
$0.34 \times 0.27 \times 0.23 \mathrm{~mm}$

> 2005 independent reflections
> 1889 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.026$
> $\theta_{\max }=25.2^{\circ}$
> $h=-10 \rightarrow 10$
> $k=-14 \rightarrow 15$
> $l=-19 \rightarrow 22$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.081$
$S=1.09$
2005 reflections
163 parameters
H atoms treated by a mixture of restrained and constrained refinement

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Cr} 1-\mathrm{O} 3$	$1.612(2)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.498(3)$
$\mathrm{Cr} 1-\mathrm{O} 2$	$1.6153(18)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.502(3)$
$\mathrm{Cr} 1-\mathrm{O} 1$	$1.6153(18)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.493(3)$
$\mathrm{Cr} 1-\mathrm{O} 4$	$1.7847(16)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.495(3)$
$\mathrm{Cr} 2-\mathrm{O} 7$	$1.598(2)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.501(3)$
$\mathrm{Cr} 2-\mathrm{O} 6$	$1.602(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.521(3)$
$\mathrm{Cr} 2-\mathrm{O} 5$	$1.608(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.524(3)$
$\mathrm{Cr} 2-\mathrm{O} 4$	$1.7921(17)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.532(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.493(3)$		
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{O} 2$	$109.08(11)$	$\mathrm{O} 7-\mathrm{Cr} 2-\mathrm{O} 5$	$111.05(15)$
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{O} 1$	$111.68(11)$	$\mathrm{O}-\mathrm{Cr} 2-\mathrm{O} 5$	$109.28(11)$
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{O} 1$	$109.87(10)$	$\mathrm{O} 7-\mathrm{Cr} 2-\mathrm{O} 4$	$108.46(10)$
$\mathrm{O} 3-\mathrm{Cr} 1-\mathrm{O} 4$	$107.78(9)$	$\mathrm{O} 6-\mathrm{Cr} 2-\mathrm{O} 4$	$106.82(10)$
$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{O} 4$	$107.32(9)$	$\mathrm{O} 5-\mathrm{Cr} 2-\mathrm{O} 4$	$109.97(10)$
$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 4$	$110.99(9)$	$\mathrm{Cr} 1-\mathrm{O} 4-\mathrm{Cr} 2$	$121.36(9)$
$\mathrm{O} 7-\mathrm{Cr} 2-\mathrm{O} 6$	$111.16(16)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$17.0(3)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$	$17.8(3)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$16.6(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.93 (2)	2.09 (2)	2.841 (3)	137 (2)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {i }}$	0.93 (2)	2.31 (3)	2.943 (3)	125 (2)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 7^{\text {ii }}$	0.87 (3)	1.95 (3)	2.720 (3)	148 (3)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {iii }}$	0.87 (3)	2.39 (3)	2.992 (3)	127 (2)
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O}{ }^{\text {i }}$	0.97	2.42	3.023 (3)	120
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\text {iv }}$	0.97	2.47	3.348 (3)	151
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\text {v }}$	0.97	2.55	3.299 (3)	135
$\mathrm{C} 2-\mathrm{H} 2 A \cdots 3^{\text {ii }}$	0.97	2.44	3.344 (3)	156
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 3^{\text {vi }}$	0.97	2.57	3.049 (3)	111
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O}^{\text {iiii }}$	0.97	2.44	3.291 (3)	146
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B} \cdots \mathrm{O}^{\text {v }}$	0.97	2.50	3.353 (4)	147
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O} 5^{\text {i }}$	0.97	2.50	3.234 (3)	132
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 1$	0.97	2.57	3.397 (3)	144
C5-H5A . . O1	0.97	2.49	3.323 (3)	144
$\mathrm{C} 5-\mathrm{H} 5 B \cdots \mathrm{O} 4^{\text {iv }}$	0.97	2.56	3.443 (3)	151

Symmetry codes: (i) $x-\frac{1}{2}, y, \frac{1}{2}-z$; (ii) $x, \frac{3}{2}-y, \frac{1}{2}+z$; (iii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv)
$-x, y-\frac{1}{2}, \frac{1}{2}-z$; (v) $\frac{1}{2}-x, 2-y, \frac{1}{2}+z$; (vi) $\frac{1}{2}+x, y, \frac{1}{2}-z$.

The H atoms of the NH groups were located in difference Fourier maps and refined with the $\mathrm{N}-\mathrm{H}$ distances restrained. All remaining H atoms were placed in calculated positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1676). Services for accessing these data are described at the back of the journal.

References

Bruker (2000). SMART (Version 5.618), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Ding, C.-R., Jin, Z.-M., Wang, H.-B., Hu, M.-L. \& Lin, H. (2004). Acta Cryst. C60, m203-m204.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

metal-organic compounds

Ferguson, G., Glidewell, C., Gregson, R. M., Meehan, P. R. \& Patterson, I. L. J. (1998). Acta Cryst. B54, 151-161.

Fossé, N., Caldes, M., Joubert, O., Ganne, M. \& Brohan, L. J. (1998). Solid State Chem. 139, 310-320.
Fossé, N., Joubert, O., Ganne, M. \& Brohan, L. (2001). Solid State Sci. 3, 121132.

Fouada, N. E., Halawyb, S. A., Mohamed, M. A. \& Zakid, M. I. (1999). Thermochim. Acta, 329, 23-29.
Jin, Z. M., Pan, Y. J., Li, X. F., Hu, M. L. \& Shen, L. (2003). J. Mol. Struct. 660, 67-72.
Katrusiak, A. (2000). J. Mol. Struct. 552, 159-164.

Martín-Zarza, P., Gili, P., Rodriguez-Romero, F. V., Ruiz-Pérez, C. \& Solans, X. (1995). Polyhedron, 14, 2907-2917.

Nimmo, J. K. \& Lucas, B. W. (1976). Acta Cryst. B32, 348-353.
Pressprich, M. R., Willett, R. D., Poshusta, R. D., Saunders, S. C., Davis, H. B. \& Gard, G. L. (1988). Inorg. Chem. 27, 260-264.
Stephens, J. S. \& Cruickshank, D. W. J. (1970). Acta Cryst. B26, 222226.

Sun, C. R. \& Jin, Z. M. (2002). Acta Cryst. C58, o600-o601.
Wang, Y., Ohishi, Y., Shishido, T., Zhang, Q. H, Yang, W., Guo, Q., Wan, H. \& Takehira, K. (2003). J. Catal. 220, 347-357.
Yim, S. D. \& Nam, I. S. (2004). J. Catal. 221, 601-611.

